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Abstract: Background: As molecular chaperones, Heat Shock Proteins (HSPs) not only play key roles in protein 
folding and maintaining protein stabilities, but are also linked with multiple kinds of diseases. Therefore, HSPs have 
been regarded as the focus of drug design. Since HSPs from different families play distinct functions, accurately 
classifying the families of HSPs is the key step to clearly understand their biological functions. In contrast to labor-
intensive and cost-ineffective experimental methods, computational classification of HSP families has emerged to be 
an alternative approach. 

Methods: We reviewed the paper that described the existing datasets of HSPs and the representative computational 
approaches developed for the identification and classification of HSPs.  

Results: The two benchmark datasets of HSPs, namely HSPIR and sHSPdb were introduced, which provided invalu-
able resources for computationally identifying HSPs. The gold standard dataset and sequence encoding schemes for 
building computational methods of classifying HSPs were also introduced. The three representative web-servers for 
identifying HSPs and their families were described. 

Conclusion: The existing machine learning methods for identifying the different families of HSPs indeed yielded 
quite encouraging results and did play a role in promoting the research on HSPs. However, the number of HSPs with 
known structures is very limited. Therefore, determining the structure of the HSPs is also urgent, which will be help-
ful in revealing their functions. 
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1. INTRODUCTION 
 Heat Shock Proteins (HSPs) are produced in cells as responses 
to physiological and environmental stressful conditions such as 
radiation, hypoxia, pH shift, nutrient deprivation, fever, cold, infec-
tion, inflammation [1, 2]. HSPs not only serve as molecular chaper-
ones by regulating protein folding, aggregation, transport, and/or 
stabilization [2, 3], but also can prevent cell death by blocking the 
pathways [1, 4].  
 According to their molecular weight, HSPs can be classified 
into six major families [5], i.e. sHsp (HSP20), HSP40, HSP70, 
HSP60, HSP90 and HSP100. It has been demonstrated that HSPs 
from the six families participate in different biological processes 
and play distinct functions. For example, HSP40 are linked with a 
series of pathological conditions such as cancer, neuro-
degeneration, muscular dystrophy, and viral infection [6, 7]. By 
binding to the protein substrates, HSP70 can assist with their fold-
ing degradation, transport, and so on. HSP70 have also been re-
ported to associate with a series of diseases, such as neurodegenera-
tive disorders, cancer, and infectious disease [8-14]. HSP90 can 
regulate the conformation, stability, and activity of numerous onco-
genic proteins. The inhibition of HSP90 can suppress multiple on-
cogenic signaling pathways [4]. Therefore, HSPs have emerged as 
potential drug targets and the focus of drug design. 
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 With the availability of rapid sequencing technologies, a great 
amount of HSPs have been found. However, due to its labor-
intensive nature, it is difficult to determine which families a new 
HSP belongs to by experimental method. Therefore, the develop-
ment of computational methods for timely and reliably annotating 
the families of HSPs is highly desirable. Inspired by the application 
of machine learning methods in computational genomics and pro-
teomics [15-21], several algorithms have been proposed for identi-
fying HSPs. 
 This paper will review the existing datasets for HSPs and the 
representative computational approaches developed for the identifi-
cation and classification of HSPs. Future perspectives of the com-
putational prediction of HSPs are also presented. 

2. BENCHMARK DATASET 
2.1. Resources of Heat Shock Proteins 
 Heat shock protein information resource (HSPIR 
http://pdslab.biochem.iisc.ernet.in/hspir/) is the first curated com-
prehensive database for heat shock proteins [5]. HSPIR currently 
contains 9902 manually curated proteins which encompass 277 
completed genomes covering prokayotic and eukaryotic species. 
These proteins in HSPIR belong to the six major families of HSP, 
i.e. sHSP (HSP20), HSP40, HSP70, HSP60, HSP90 and HSP100. 
 Later on, by collecting data from Uniprot [22], PFAM [23], 
NCBI CDD [24] and InterPro [25], an integrated resource called 
sHSPdb (small Heat Shock Proteins database, http://forge.info.univ-
angers.fr/~gh/Shspdb/index.php) is developed for providing infor-
mation about sHSP from all kingdoms [26]. At present, sHSPdb 
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contains approximately 4800 curated sHSP sequences and also 
provides a browser interface for retrieving comprehensive informa-
tion on sHSPs. 

2.2. Benchmark Dataset 
 A dataset containing many redundant samples with high simi-
larity sequences would lack statistical representativeness. A predic-
tor, if trained and tested by such a biased dataset, might yield mis-
leading results with overestimated accuracy [27]. To build a high 
quality dataset, the CD-HIT program [28] that is widely used in 
computational genomics and proteomics [29-32] was used to re-
move HSPs with pairwise sequence identity ≥40% in HSPIR. 
 Accordingly, a benchmark dataset was constructed by Feng  
et al. [33], which contains 357 HSP20 sequences, 1279 HSP40 
sequences, 163 HSP60 sequences, 283 HSP70 sequences, 58 
HSP90 sequences and 85 HSP100 sequences. This benchmark 
dataset has been used to train computational models for classifying 
the six major families of HSPs [33]. 

3. SEQUENCE ENCODING SCHEMES 
 To develop a sequence-based predictor for identifying the at-
tribute of a protein, one of the keys is to formulate its sequence with 
an effective discrete expression that can truly reflect the intrinsic 
correlation with the attribute to be predicted. 

3.1 n-peptide Composition 
 The most straightforward method to formulate a protein is the 
n-peptide Composition (NPC). By doing so, a protein sequence can 
be converted into the following discrete vector, 

    (1) 
where fi is the occurrence frequency of the i-th n-peptide in a pro-
tein sequence and is defined as following, 

     
 (2) 

 Ni is the number of the i-th n-peptide in the protein sequence 
and L is the sequence length. When n=1, NPC indicates the amino 
acid composition; n=2 indicates the dipeptide composition, and so 
forth. The sequence encoding scheme of n-peptide composition has 

been successfully and widely used in many bioinformatics studies 
on peptides and proteins [21, 34-45]. 

3.2. Reduced Amino Acid Alphabet 
 Although the n-peptide composition can incorporate some sort 
of sequence order information, the dimension formed in this way 
will increase rapidly. For instance, the vector formed by the  
tripeptide composition would be 203=8000 dimensions, and that 
formed by the n-peptide composition would be 20n dimensions.  
The high-dimension disaster problem will appear with the increase 
of n.  
 To alleviate such a problem, the reduced amino acid alphabet 
(RAAA) has been introduced to encode protein sequences [46]. In 
addition, by using RAAA to encode protein sequences, we could 
also improve the ability to find structurally conserved regions and 
structural similarity of entire proteins [47-49]. One common way 
to design RAAA is by clustering amino acids into groups accord-
ing to sequence or structure information [50]. Recently, Etchebest 
and his colleagues [51] defined the RAAA based on a structural 
alphabet called Protein Blocks proposed by de Brevern et al. [52]. 
According to different optimization procedures, the 20 native 
amino acids can form five different cluster profiles as shown in 
Table 1.  
 Since it has been proposed, RAAA has been widely used to 
represent protein sequences in computational proteomics [49, 53-
54]. By using RAAA, a protein sequence can be encoded by the 
following discrete vector: 

     (3) 
where fi′ is the occurrence frequency of the i-th n-peptide RAAA 
defined as: 

      
 (4)

 

 Ni′ is the number of the i-th n-peptide (generally n=1, 2, or 3) 
RAAA in the protein sequence and L is also the length of the pro-
tein sequence. D indicates the dimension of the vector and its value 
depends on the cluster profiles and the value of n, which is indi-
cated in Table 2. 

Table 1. Scheme for reduced amino acid alphabet [33]. 

Profile Size Protein Blocks Method 

CP(13) 13 G-IV-FYW-A-L-M-E-QRK-P-ND-HS-T-C 

CP(11) 11 G-IV-FYW-A-LM-EQRK-P-ND-HS-T-C 

CP(9) 9 G-IV-FYW-ALM-EQRK-P-ND-HS-TC 

CP(8) 8 G-IV-FYW-ALM-EQRK-P-ND-HSTC 

CP(5) 5 G-IVFYW-ALMEQRK-P-NDHSTC 

  
Table 2. Dimensions of the feature vector using n-peptide RAAA of different cluster profiles [33]. 

Cluster Profiles 
n-peptide 

CP(13) CP(11) CP(9) CP(8) CP(5) 

n=1 13 11 9 8 5 

n=2 169 121 81 64 25 

n=3 2197 1331 729 512 125 
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4. COMPUTATIONAL MODELS FOR IDENTIFYING HEAT 
SHOCK PROTEINS 
 In the past years, several computational methods together with 
the corresponding web-servers have been proposed for the identifi-
cation and classification of HSPs (Table 3). Given below are brief 
introductions of these representative methods. 

4.1. iHSP-PseRAAAC 
 Based on the benchmark dataset as mentioned above, Feng  
et al. developed iHSP-PseRAAAC for identifying the six major 
families of HSPs [33]. iHSP-PseRAAAC encodes the sequences 
using the dipeptide of RAAA based the cluster profile CP(11)  
(Table 2). The resulting 121-dimension feature vector was then 
used as the input of the Support Vector Machine (SVM) classifier 
to make predictions. The jackknife test result demonstrates that the 
overall success rate achieved by iHSP-PseRAAAC is promising in 
identifying the six families of HSP. For the convenience of scien-
tific community, a freely accessible online web-server for iHSP-
PseRAAAC is provided at http://lin-group.cn/server/iHSP-
PseRAAAC, by which researchers can easily predict which family 
a query HSP belongs to. 

4.2. PredHSP 
 Inspired by iHSP-PseRAAAC, Kumar and his colleagues pro-
posed a two-tier SVM based method called PredHSP for the predic-
tion and classification of HSPs [55]. The 1st-tier of PredHSP pre-
dicts whether a query protein sequence is an HSP or not, and it is 
trained on a dataset containing 2225 HSPs reported in the work of 
Feng et al. [33] and 10000 non-HSPs obtained from Uni-
Prot/SwissProt [22]. The 2nd-tier of PredHSP is used to identify the 
family to which an HSP might belong, which is trained by using the 
same benchmark dataset as that used in the work of Feng et al. For 
both 1st-tier and 2nd-tier of PredHSP, the protein sequence is en-
coded using the coupled amino acid composition (i.e. dipeptide 
composition). The performance of PredHSP is a little better than 
that of iHSP-PseRAAAC. An online webserver for PredHSP is 
provided at http://14.139.227.92/mkumar/predhsp/index.html.  

4.3. JPred 
 Based on the structural differences, HSPs can be further classi-
fied into superfamilies that play distinct molecular functions. For 
example, HSP40 also known as J-protein can be classified into the 
following four types, Type I, Type II, Type III and Type IV J-
proteins. Although J-proteins are closely related to cancer proper-
ties, the four types of J-proteins play different functions [56]. For 
example, Type I J-protein is tumor promoting, while Type II J-
protein acts as tumor suppressors [57]. Therefore, it is also neces-
sary to classify the types of J-proteins.  
 By using the tri-peptide of RAAA based on the cluster profile 
CP(8) (Table 2), Feng et al. proposed a support vector machine 
based model for classifying the four families of J-proteins [58]. The 
model is trained based on a benchmark dataset containing 1,245 J-
proteins obtained from HSPIR database, which contains 63 Type I 
J-proteins, 53 Type II J-proteins, 1,107 Type III J-proteins, and 22 
Type IV J-proteins. In the jackknife test, the proposed method ob-

tained an accuracy of 94.06%. A user-friendly webserver was also 
established and could be freely accessible at http://lin-
group.cn/server/Jpred. 

CONCLUSION 
 As one kind of molecular chaperones, HSPs have been found in 
all living organisms from bacteria to human. They play key roles 
not only in assisting proper protein conformation and maintaining 
the overall cellular protein homeostasis, but also in diseases such as 
Alzheimer’s disease, Parkinson’s disease, and Huntingdon disease. 
Since the distinct functions of HPSs from different families, accu-
rate classification of the family and superfamily of HSPs will pro-
vide vital clues in revealing their molecular functions. 
 It is exciting that we witnessed the progresses in the realm of 
HSPs. For example, some databases, computational methods as 
well as web-servers have been developed in this realm over the past 
several years. These works indeed yielded quite encouraging results 
and did play a role in promoting the research on HSPs. However, 
there are still some challenges that need to be considered in future 
work. For example, the accuracy for classifying the family of HSPs 
still needs to be improved by enlarging the benchmark dataset and 
by extracting new features to represent the sequences. In addition, it 
is known that the function of a protein is determined by its struc-
ture. However, only 294 of the 9902 HSPs in the HSPIR are with 
known structure. Therefore, determining the structure of the HSPs 
is also urgent, which will be helpful in revealing their functions. 
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